519 research outputs found

    Computational Tools for the Untargeted Assignment of FT-MS Metabolomics Datasets

    Get PDF
    Metabolomics is the study of metabolomes, the sets of metabolites observed in living systems. Metabolism interconverts these metabolites to provide the molecules and energy necessary for life processes. Many disease processes, including cancer, have a significant metabolic component that manifests as differences in what metabolites are present and in what quantities they are produced and utilized. Thus, using metabolomics, differences between metabolomes in disease and non-disease states can be detected and these differences improve our understanding of disease processes at the molecular level. Despite the potential benefits of metabolomics, the comprehensive investigation of metabolomes remains difficult. A popular analytical technique for metabolomics is mass spectrometry. Advances in Fourier transform mass spectrometry (FT-MS) instrumentation have yielded simultaneous improvements in mass resolution, mass accuracy, and detection sensitivity. In the metabolomics field, these advantages permit more complicated, but more informative experimental designs such as the use of multiple isotope-labeled precursors in stable isotope-resolved metabolomics (SIRM) experiments. However, despite these potential applications, several outstanding problems hamper the use of FT-MS for metabolomics studies. First, artifacts and data quality problems in FT-MS spectra can confound downstream data analyses, confuse machine learning models, and complicate the robust detection and assignment of metabolite features. Second, the assignment of observed spectral features to metabolites remains difficult. Existing targeted approaches for assignment often employ databases of known metabolites; however, metabolite databases are incomplete, thus limiting or biasing assignment results. Additionally, FT-MS provides limited structural information for observed metabolites, which complicates the determination of metabolite class (e.g. lipid, sugar, etc. ) for observed metabolite spectral features, a necessary step for many metabolomics experiments. To address these problems, a set of tools were developed. The first tool identifies artifacts with high peak density observed in many FT-MS spectra and removes them safely. Using this tool, two previously unreported types of high peak density artifact were identified in FT-MS spectra: fuzzy sites and partial ringing. Fuzzy sites were particularly problematic as they confused and reduced the accuracy of machine learning models trained on datasets containing these artifacts. Second, a tool called SMIRFE was developed to assign isotope-resolved molecular formulas to observed spectral features in an untargeted manner without a database of expected metabolites. This new untargeted method was validated on a gold-standard dataset containing both unlabeled and 15N-labeled compounds and was able to identify 18 of 18 expected spectral features. Third, a collection of machine learning models was constructed to predict if a molecular formula corresponds to one or more lipid categories. These models accurately predict the correct one of eight lipid categories on our training dataset of known lipid and non-lipid molecular formulas with precisions and accuracies over 90% for most categories. These models were used to predict lipid categories for untargeted SMIRFE-derived assignments in a non-small cell lung cancer dataset. Subsequent differential abundance analysis revealed a sub-population of non-small cell lung cancer samples with a significantly increased abundance in sterol lipids. This finding implies a possible therapeutic role of statins in the treatment and/or prevention of non-small cell lung cancer. Collectively these tools represent a pipeline for FT-MS metabolomics datasets that is compatible with isotope labeling experiments. With these tools, more robust and untargeted metabolic analyses of disease will be possible

    Search for top squark production in fully hadronic final states in proton-proton collisions at root s=13 TeV

    Get PDF
    A search for production of the supersymmetric partners of the top quark, top squarks, is presented. The search is based on proton-proton collision events containing multiple jets, no leptons, and large transverse momentum imbalance. The data were collected with the CMS detector at the CERN LHC at a center-of-mass energy of 13 TeV, and correspond to an integrated luminosity of 137 fb(-1). The targeted signal production scenarios are direct and gluino-mediated top squark production, including scenarios in which the top squark and neutralino masses are nearly degenerate. The search utilizes novel algorithms based on deep neural networks that identify hadronically decaying top quarks and W bosons, which are expected in many of the targeted signal models. No statistically significant excess of events is observed relative to the expectation from the standard model, and limits on the top squark production cross section are obtained in the context of simplified supersymmetric models for various production and decay modes. Exclusion limits as high as 1310 GeVare established at the 95% confidence level on the mass of the top squark for direct top squark production models, and as high as 2260 GeV on the mass of the gluino for gluino-mediated top squark production models. These results represent a significant improvement over the results of previous searches for supersymmetry by CMS in the same final state.Peer reviewe

    Observation of tW production in the single-lepton channel in pp collisions at root s=13 TeV

    Get PDF
    A measurement of the cross section of the associated production of a single top quark and a W boson in final states with a muon or electron and jets in proton-proton collisions at root s = 13 TeV is presented. The data correspond to an integrated luminosity of 36 fb(-1) collected with the CMS detector at the CERN LHC in 2016. A boosted decision tree is used to separate the tW signal from the dominant t (t) over bar background, whilst the subleading W+jets and multijet backgrounds are constrained using data-based estimates. This result is the first observation of the tW process in final states containing a muon or electron and jets, with a significance exceeding 5 standard deviations. The cross section is determined to be 89 +/- 4 (stat) +/- 12 (syst) pb, consistent with the standard model.Peer reviewe

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo

    No full text
    International audienceIntermediate-mass black holes (IMBHs) span the approximate mass range 100−105 M⊙, between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∼150 M⊙ providing direct evidence of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass 200 M⊙ and effective aligned spin 0.8 at 0.056 Gpc−3 yr−1 (90% confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to 0.08 Gpc−3 yr−1.Key words: gravitational waves / stars: black holes / black hole physicsCorresponding author: W. Del Pozzo, e-mail: [email protected]† Deceased, August 2020

    Measurement of the double-differential inclusive jet cross section in proton-proton collisions at s\sqrt{s} = 5.02 TeV

    No full text
    International audienceThe inclusive jet cross section is measured as a function of jet transverse momentum pTp_\mathrm{T} and rapidity yy. The measurement is performed using proton-proton collision data at s\sqrt{s} = 5.02 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 27.4 pb1^{-1}. The jets are reconstructed with the anti-kTk_\mathrm{T} algorithm using a distance parameter of RR = 0.4, within the rapidity interval y\lvert y\rvert<\lt 2, and across the kinematic range 0.06 <\ltpTp_\mathrm{T}<\lt 1 TeV. The jet cross section is unfolded from detector to particle level using the determined jet response and resolution. The results are compared to predictions of perturbative quantum chromodynamics, calculated at both next-to-leading order and next-to-next-to-leading order. The predictions are corrected for nonperturbative effects, and presented for a variety of parton distribution functions and choices of the renormalization/factorization scales and the strong coupling αS\alpha_\mathrm{S}

    Inclusive nonresonant multilepton probes of new phenomena at s\sqrt{s} = 13 TeV

    No full text
    An inclusive search for nonresonant signatures of beyond the standard model (SM) phenomena in events with three or more charged leptons, including hadronically decaying τ\tau leptons, is presented. The analysis is based on a data sample corresponding to an integrated luminosity of 138 fb1^{-1} of proton-proton collisions at s\sqrt{s} = 13 TeV, collected by the CMS experiment at the LHC in 2016-2018. Events are categorized based on the lepton and b-tagged jet multiplicities and various kinematic variables. Three scenarios of physics beyond the SM are probed, and signal-specific boosted decision trees are used for enhancing sensitivity. No significant deviations from the background expectations are observed. Lower limits are set at 95% confidence level on the mass of type-III seesaw heavy fermions in the range 845-1065 GeV for various decay branching fraction combinations to SM leptons. Doublet and singlet vector-like τ\tau lepton extensions of the SM are excluded for masses below 1045 GeV and in the mass range 125-150 GeV, respectively. Scalar leptoquarks decaying exclusively to a top quark and a lepton are excluded below 1.12-1.42 TeV, depending on the lepton flavor. For the type-III seesaw as well as the vector-like doublet model, these constraints are the most stringent to date. For the vector-like singlet model, these are the first constraints from the LHC experiments. Detailed results are also presented to facilitate alternative theoretical interpretations

    Inclusive nonresonant multilepton probes of new phenomena at s\sqrt{s} = 13 TeV

    No full text
    An inclusive search for nonresonant signatures of beyond the standard model (SM) phenomena in events with three or more charged leptons, including hadronically decaying τ\tau leptons, is presented. The analysis is based on a data sample corresponding to an integrated luminosity of 138 fb1^{-1} of proton-proton collisions at s\sqrt{s} = 13 TeV, collected by the CMS experiment at the LHC in 2016-2018. Events are categorized based on the lepton and b-tagged jet multiplicities and various kinematic variables. Three scenarios of physics beyond the SM are probed, and signal-specific boosted decision trees are used for enhancing sensitivity. No significant deviations from the background expectations are observed. Lower limits are set at 95% confidence level on the mass of type-III seesaw heavy fermions in the range 845-1065 GeV for various decay branching fraction combinations to SM leptons. Doublet and singlet vector-like τ\tau lepton extensions of the SM are excluded for masses below 1045 GeV and in the mass range 125-150 GeV, respectively. Scalar leptoquarks decaying exclusively to a top quark and a lepton are excluded below 1.12-1.42 TeV, depending on the lepton flavor. For the type-III seesaw as well as the vector-like doublet model, these constraints are the most stringent to date. For the vector-like singlet model, these are the first constraints from the LHC experiments. Detailed results are also presented to facilitate alternative theoretical interpretations
    corecore